机器学习笔记(二) —— 决策树

##决策树小结

决策树分类器就像带有终止块的流程图,终止块表示分类结果。
开始处理数据集时,我们首先需要测量集合中数据的不一致性,也就是熵,然后寻找最优方案划分数据集,直到数据集中的 所有数据属于同一分类。
ID3算法可以用于划分标称型数据集。构建决策树时,我们通常采用递 归的方法将数据集转化为决策树。一般我们并不构造新的数据结构,而是使用python语言内嵌的 数据结构字典存储树节点信息。
使用Matplotlib的注解功能,我们可以将存储的树结构转化为容易理解的图形。python语言的pickle模块可用于存储决策树的结构。隐形眼镜的例子表明决策树可能会产生过多的数据集划分, 从而产生过度匹配数据集的问题。我们可以通过裁剪决策树,合并相邻的无法产生大量信息增益 的叶节点,消除过度匹配问题。
还有其他的决策树的构造算法,最流行的是C4.5和CART